Home
Class 9
MATHS
27^(x)=(9)/(3^(x))," find "x...

27^(x)=(9)/(3^(x))," find "x

Promotional Banner

Similar Questions

Explore conceptually related problems

27^(x)=(9)/(3^(x)), Find the value of x

3^(x)times27^(x)=9^(x+4) then find x

If x gt 0 and x^(2) +(1)/(9x^(2))= (25)/(36) , find x^(3) + (1)/(27x^(3))

If 3 xx27^x = 9^(x+4) , then find the value of x?

if f(x)=((e^((x+3)ln27))^(x/27)-9)/(3^x-27) , x 3 if lim_(x->3)f(x) exist then lmbda is

int((27)^(1+x)+9^(1-x))/(3^(x))

If 9^(2x-7)=(27)^(x-4) , then find the value of 3^x .

If f(x)={(((exp{(x+3)ln27})^(1/27[x])-9)/(3^x-27), x lt 3), (lamda.((1-cos(x-3)))/((x-3)tan(x-3)), x gt 3):} is continuous at x = 3, then the value of 9lambda must be