Home
Class 12
MATHS
(cos2x)/(sin^(2)x cos^(2)x)dx=-cot x-tan...

(cos2x)/(sin^(2)x cos^(2)x)dx=-cot x-tan x+c

Promotional Banner

Similar Questions

Explore conceptually related problems

prove: int(cos2x+2sin^(2)x)/(cos^(2)x)dx=tanx+c .

int(dx)/(sin^(2)x+cos^(2)x)=tan x-cot x+c

int(cos2x)/((sin x+cos x)^(2))dx=

int(sin2x-cos2x)/(sin2x*cos2x)dx=?

If int(cos^(4)x)/(sin^(2)x)dx=A cot x +B sin 2x +(C)/(2)x+D , then

If int(cos^(4)x)/(sin^(2)x)dx=A cot x +B sin 2x +(C)/(2)x+D , then

int(sin2x)/(sin^(2)x+2cos^(2)x)dx(i)-log(1+sin^(2)x)+C(ii)log(1+cos^(2)x)+C( iii) -log(1+cos^(2)x)+C(iv)log(1+tan^(2)x)+C

int(sin2x)/(sin^(2)x+2cos^(2)x)dx(i)-log(1+sin^(2)x)+C(ii)log(1+cos^(2)x)+C( iii) -log(1+cos^(2)x)+C(iv)log(1+tan^(2)x)+C

int( d x)/(sin ^(2) x cos ^(2) x) equals a) tan x+cot x+C b) tan x-cot x+C c) tan x cot x+C d) tan x-cot 2 x+C

int(cos2x)/((cos x+sin x)^(2))dx