Home
Class 10
MATHS
(4sqrt(3)+5sqrt(2))/(sqrt(4)b+sqrt(18))...

(4sqrt(3)+5sqrt(2))/(sqrt(4)b+sqrt(18))

Promotional Banner

Similar Questions

Explore conceptually related problems

(4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))

Rationales the denominator and simplify: (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))( ii) (2sqrt(3)-sqrt(5))/(2sqrt(2)+3sqrt(3))

Rationales the denominator and simplify: (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) (ii) (5+2sqrt(3))/(7+4sqrt(3)) (iii) (1+sqrt(2))/(3-2sqrt(2)) (2sqrt(6)-sqrt(5))/(3sqrt(5)-2sqrt(6)) (v) (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18)) (vi) (2sqrt(3)-sqrt(5))/(2sqrt(3)+3sqrt(3))

If (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))=(a+bsqrt(6))/(15) and ((a)/(b))^(x)((b)/(a))^(2x)=(64)/(729) , then find x .

Rationalise the denominator and simplify: (i) (4sqrt(3)+5sqrt(2))/(sqrt(48)+\ sqrt(18)) (ii) (2sqrt(3)-\ sqrt(5))/(2\ sqrt(2)+\ 3sqrt(3))

Simplify by raationalising the denominator. (i) (7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)) (ii) (2sqrt(6) -sqrt(5))/(3sqrt(5)-2sqrt(6))

If (4 sqrt(3) + 5 sqrt(2))/(sqrt(48 ) + sqrt(18))= a + bsqrt(6) , then the value of a and b are respectively

The value of (sqrt(48)+sqrt(32))/(sqrt(27)+sqrt(18)) is (4)/(3)(b)4(c)3(c)(3)/(4)

If a= (sqrt(5) + sqrt(2))/(sqrt(5) -sqrt(2)) and b = (sqrt(5)-sqrt(2))/(sqrt(5)+sqrt(2)) show that 3a^(2) + 4ab -3b^(2) = 4 +(56)/(3) sqrt(10)

Rationalize the denominator of (5sqrt(3)-3sqrt(2))/(sqrt(108)+sqrt(18))