Home
Class 12
MATHS
20*(1)/(x(x^(4)-1))...

20*(1)/(x(x^(4)-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x rarr 1) (x^(1/20)-1)/(x^(1/40)-1)

If x+sqrt(x^(2)-1)+(1)/(x+sqrt(x^(2)+1))=20 then x^(2)+sqrt(x^(4)-1)+(1)/(x^(2)+sqrt(x^(4)-1))=

int (1)/(4x^(2)-20x+17)dx

lim_(x rarr oo) ((x+2)^(10)+(x+4)^(10)+...+(x+20)^(10))/(x^(10)+1)= ______.

Find the minimum value of log_(x_(1))(x_(2)-(1)/(4))+log_(x_(2))(x_(3)-(1)/(4))+......+log_(x_(20))(x_(1)-(1)/(4)) over all x_(1),x_(2),...x_(20)in((1)/(4),1)

(20)/((x-3)(x-4))+(10)/(x-4)+1>0

If 64x^(2) + (1)/(64 x^(2)) = 20 , then 8x - (1)/(4x) can be "_______"

Factorize :(x^(2)-4x)(x^(2)-4x-1)-20

The value of x satisfying the equation [3(1-(1)/(2)+(1)/(4).........oo)]^(log_(10)x)=[20(1-(1)/(4)+(1)/(16).........oo)]^(log_(x)1)

If f(x) =tan^(-1)((x)/(1+20x^(2))) , show that, f'(x)=(5)/(1+25x^(2))-(4)/(1+16x^(2))