Home
Class 12
MATHS
" (vi) "([a^(2)+2a,2a+1,1],[2a+1,a+2,1],...

" (vi) "([a^(2)+2a,2a+1,1],[2a+1,a+2,1],[3,3,1]|

Promotional Banner

Similar Questions

Explore conceptually related problems

|(a^(2)+2a,2a+1,1),(2a+1,a+2,1),(3,3,1)|

Prove that |[a^2+2a,2a+1,1],[2a+1,a+2,1],[3,3,1]|=(a-1)^3

Evaluate the following: |[a^2+2a, 2a+1, 1],[2a+1, a+2, 1],[3,3,1]|

Show that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

Prove that: {:|(a^2+2a,2a+1,1), (2a+1,a+2,1),(3,3,1)|:}=(a-1)^3 .

Using properties of determinants prove that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

Using the proprties of determinants in Exercise 7 to 9, prove that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is a. non-negative b. non-positive c. negative d. positive

Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is a. non-negative b. non-positive c. negative d. positive

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3