Home
Class 12
MATHS
tan^(-1)(2x)/(x^(2)-1)+cot^(-1)(x^(2)-1)...

tan^(-1)(2x)/(x^(2)-1)+cot^(-1)(x^(2)-1)/(2x)+(4 pi)/(3)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),x in(0,1), then (x^(4)+(1)/(x^(4))) is equal to

Solve : tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),xgt0

Solve the following equations tan^(-1)""(2x)/(1-x^(2))+cot^(-1)""(1-x^(2))/(2x)=(pi)/(3)

Solve for x:tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),-1

Solve for x, tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3), -1 lt x lt 1 .

Solve the following equation for x:tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(2 pi)/(3),x>0

tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=pi/3