Home
Class 12
MATHS
If f(x)=int0^(cos^2x)secx(sqrt(t))/(1+t^...

If `f(x)=int_0^(cos^2x)secx(sqrt(t))/(1+t^3)dt` then (i) `f'(pi)=0` (ii) `f'(pi)=1` (iii) `f'(2pi)=1` (iv) `f'(2pi)=-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(0)^(cos^(2)x)sec x(sqrt(t))/(1+t^(3))dt then (i) f'(pi)=0( ii) f'(pi)=1 (iii) f'(2 pi)=1( iv )f'(2 pi)=-1

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

Let f(x)=int_0^(sin^2x) sin^-1(sqrt(t))dt+int_0^(cos^2x) cos^-1(sqrt(t))dt , then (A) f(x) is a constant function (B) f(pi/4)=0 (C) f(pi/3)=pi/4 (D) f(pi/4)=pi/4

Let f(x)=int_0^(sin^2x) sin^-1(sqrt(t))dt+int_0^(cos^2x) cos^-1(sqrt(t))dt , then (A) f(x) is a constant function (B) f(pi/4)=0 (C) f(pi/3)=pi/4 (D) f(pi/4)=pi/4

Let f(x)=int_0^(sin^2x) sin^-1(sqrt(t))dt+int_0^(cos^2x) cos^-1(sqrt(t))dt , then (A) f(x) is a constant function (B) f(pi/4)=0 (C) f(pi/3)=pi/4 (D) f(pi/4)=pi/4

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt , then f(x+pi) is (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

F(x)= int_(0)^(x)(cost)/((1+t^(2)))dt0lt=xlt=2pi . Then

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s f(x)+f(pi) (b) f(x)+2(pi) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)