Similar Questions
Explore conceptually related problems
Recommended Questions
- Let lim(n->oo)(((k n)!)/(n^(k n)))^(1//n)=lambda(k) where k in N
Text Solution
|
- The value of lim(n rarr oo)sum(k=1)^(n)log(1+(k)/(n))^((1)/(n)) ,is
Text Solution
|
- Value of L = lim(n->oo) 1/n^4 [1 sum(k=1)^n k + 2sum(k=1)^(n-1) k + 3 ...
Text Solution
|
- Let lim(n rarr oo)(((kn)!)/(n^(kn)))^(1/n)=lambda(k) where k in N
Text Solution
|
- lim (n rarr oo) (1 ^ (k) + 2 ^ (k) + ... + n ^ (k)) / (k * n ^ (k + 1)...
Text Solution
|
- lim (n rarr oo) sum (K = 1) ^ (n) (K) / (n ^ (2) + K ^ (2))
Text Solution
|
- Find the value of lim(n rarr oo)sum(k=1)^(n)((k)/(n^(2)+k))
Text Solution
|
- Given that lim(nto oo) sum(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1...
Text Solution
|
- lim(n rarr oo) sum(k=1)^(n) k/(n^(2)+k^(2))=
Text Solution
|