Home
Class 12
MATHS
Let lim(n->oo)(((k n)!)/(n^(k n)))^(1//n...

Let `lim_(n->oo)(((k n)!)/(n^(k n)))^(1//n)=lambda(k)` where `k in N`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let lim_(n rarr oo)(((kn)!)/(n^(kn)))^(1/n)=lambda(k) where k in N

lim_(n to oo) {(n!)/((kn)^n)}^(1/n) , where k != 0 is a constant and n in N , equals :

If lim_(n rarr oo)(prod_(k-1)^(n)(1+(k)/(n)))^(1/n) has the value of equal to ke^(-1) where k in N, find k

Let lim_(n to oo) n sin ( 2 pi e lfloorn )= k pi , where n pi N . Find k :

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is