Home
Class 12
MATHS
" (iii) "(3)/(4)sqrt(8)...

" (iii) "(3)/(4)sqrt(8)

Promotional Banner

Similar Questions

Explore conceptually related problems

The area of the circle x^2+y^2=16 exterior to the parabola y^2=6x is (A) 4/3(4pi-sqrt(3)) (B) 4/3(4pi+sqrt(3)) (C) 4/3(8pi-sqrt(3)) (D) 4/3(8pi+sqrt(3))

The length of latusrectum of the parabola whose parametric equations are x=t^2+t+1,y=t^2-t+1, where t in R is equal to (1) sqrt(2) (2) sqrt(4) (3) sqrt(8) (4) sqrt(6)

The length of latusrectum of the parabola whose parametric equations are x=t^2+t+1,y=t^2-t+1, where t in R is equal to (1) sqrt(2) (2) sqrt(4) (3) sqrt(8) (4) sqrt(6)

(sqrt(8)+sqrt(3))/(sqrt(8)-sqrt(3))+ (sqrt(8)-sqrt(3))/(sqrt(8)+sqrt(3))

Simplify the following (i) sqrt45-3sqrt20+4sqrt5 (ii) sqrt(24)/8 + sqrt54/9 (iii) root4(12) xx root7(6) (iv) 4sqrt28 div 3sqrt7 div root3(7) (v) 3sqrt3+2sqrt27 + 7/(sqrt3) (vi) (sqrt3-sqrt2)^(2) (vii) root4(81)-8root3(216)+15root5(32)+ sqrt225 (viii) 3/sqrt8+ 1 / sqrt2 (ix) (2sqrt3)/3- (sqrt3)/6

The shortest distance between line y-x=1 and curve is : (1)(sqrt(3))/(4) (2) (3sqrt(2))/(8) (3) (8)/(3sqrt(2))(4)(4)/(sqrt(3))

Prove that (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+....+(1)/(sqrt(8)+sqrt(9))=2