Home
Class 12
MATHS
If f(x)=int0^x tf(t)dt+2, then...

If `f(x)=int_0^x tf(t)dt+2,` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_0^x f(t)dt=x+int_x^1 t f(t)dt , then f(1)= (A) 1/2 (B) 0 (C) 1 (D) -1/2

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

If kint_(0)^(1)xf(3x)dx=int_(0)^(3)tf(t)dt , then the value of k is

If kint_(0)^(1)xf(3x)dx=int_(0)^(3)tf(t)dt , then the value of k is

If int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(primeprime)(x)+f(x) is equal to (a) -cosx (b) -sinx (c) int_0^x(x-t)f(t)dt (d) 0

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(primeprime)(x)+f(x) is equal to (a) -cosx (b) -sinx (c) int_0^x(x-t)f(t)dt (d) 0

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to a) -cosx (b) -sinx c) int_0^x(x-t)f(t)dt (d) 0