Home
Class 12
MATHS
A primitive of sin 6x is (1) 1/3(sin^6 x...

A primitive of `sin 6x` is (1) `1/3(sin^6 x-sin^3 x)+c` (2) `-1/3cos^2 3x+c` (3) `1/3 sin^2 3x+c` (4) `1/3 sin(3x+pi/7)sin(3x-pi/7)+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin ^(2) x + (1)/(4) sin^(2) 3x = sin x sin^(2) 3 x then x =

sin^(3)x +sin^(3)(x-(2pi)/3) +sin^(3)(x+(2pi)/3)=0

Solve sin^(2)x+(1)/(4)sin^(2)3x=sin x sin^(2)3x

sin ^ (- 1) x + sin ^ (- 1) 2x = (2 pi) / (3)

solve: sin ^ (- 1) x + sin ^ (- 1) 2x = (pi) / (3)

Solve sin^(-1)x + sin^(-1) 2x = (pi)/(3)

Prove that ((sin ^ (3) x) / (1 + cos x) + (cos ^ (3) x) / (1-sin x)) = sqrt (2) sin ((pi) / (4) + x)

(cos 2x sin x + cos 6x sin 3x)/(sin 2x sin x + sin 6x sin 3x) =cot 5x

Find x if sin^-1 (6x) + sin^-1 (6sqrt3x) = - pi/2