Home
Class 12
MATHS
Four vectors vec a,vec b, vec c and ve...

Four vectors `vec a,vec b, vec c and vec x` satisfy the relation `(vec a * vec x)vec b=vec c+vec x` where `vec b * vec a != 1` The value of `vec x` in terms of `vec a,vec b and vec c` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Vector vec x satisfying the relation vec A*vec x=c and vec B xxvec x=vec B is :

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

If vec a, vec b, vec c are unit vectors such that vec a + vec b + vec c = vec 0 , then the value of vec a . vec b + vec b.vec c + vec c vec a is equal to

Three vectors vec a, vec b and vec c satisfy the condition vec a + vec b + vec b + vec c = vec 0 .Evaluate the quantity mu = vec a * vec b + vec b * vec c + vec c * vec a , if | vec a | = 1 | vec b | = 4 and | vec c | = 2

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

If vec a, vec b, vec c are unit vectors such that vec a + vec b + vec c = vec 0 find the value of vec a * vec b + vec b * vec c + vec c * vec avec a * vec b + vec b * vec c + vec c * vec a

If the vectors vec a, vec b, vec c are coplanar, then the value of | (vec a, vec b, vec c), (vec a * vec a, vec a * vec b, vec a * vec c), (vec b * vec a, vec b * vec b, vecb * vec c) | =

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

If vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c= vec0, then write the value of vec a . vec b+ vec b . vec c+ vec c . vec a

Non-zero vectors vec a, vec b and vec c satisfy vec a * vec b = 0, (vec b-vec a) (vec b + vec c) = 0 and 2 | vec b + vec c | = | vec b -vec a | If vec a = muvec b + 4vec c then possible value of mu are