Home
Class 12
MATHS
if x=loge t , t > 0 and y+1=t^2 then (d^...

if `x=log_e t , t > 0` and `y+1=t^2` then `(d^2y)/(dx^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=log t , t gt 0 and y=1/t , then (d^(2)y)/(dx^(2)) , is

If x=log t , t gt 0 and y=1/t , then (d^(2)y)/(dx^(2)) , is

If x=logt and y=t^(2)-1 , then what is (d^(2)y)/(dx^(2)) at t = 1 equal to?

If x=sin^(-1)t and y=log(1-t^(2)), then ((d^(2)y)/(dx^(2)))_(t=(1)/(2)) is

If x = sin^(-1)t and y = log (1 - t^2) , then (d^2 y)/(dx^2)|_(t=1//2) is

If t is a parameter and x = t + 1/t , y = t - 1/t , " then " (d^2 y)/(dx^2) =

If t is a parameter and x = t + 1/t , y = t - 1/t , " then " (d^2 y)/(dx^2) =

If x=tlogt,y=t^(t)," then "(d^2y)/(dx^(2))=