Home
Class 12
MATHS
Prove that: 2tan^(-1)1/2+tan^(-1)1/7=ta...

Prove that: `2tan^(-1)1/2+tan^(-1)1/7=tan^(-1)(31)/(17)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2"tan"^(-1)1/2+"tan"^(-1)1/7="tan"^(-1)31/17

Prove that 2 tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

Prove that 2tan^(-1)(1/2)-tan^(-1)(1/4)=tan^(-1)(13/16)

Prove : 2"tan"^(-1)1/2+"tan"^(-1)1/7="tan"^(-1)31/17

Show that 2tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

Show that 2 tan^(-1)(1/2)+tan^(-1) (1/7)=tan^(-1)(31/17)

Prove that: tan^(-1)(1/2)+tan^(-1)(1/5)=tan^(-1)(7/9)

Prove that 2tan^(-1)(1/2)+tan^(-1)(1/7)=sin^(-1)((31)/(25sqrt(2)))

Prove that : tan^(-1)1/7+tan^(-1)1/(13)=tan^(-1)2/9

Prove that 2 tan^-1(1/2) + tan^-1 (1/7) = tan^-1 (31/17) .