Home
Class 12
MATHS
Consider the function f(x)=(cos^-1 (1-{...

Consider the function `f(x)=(cos^-1 (1-{x}))/(sqrt2{x})` ; where {.} denotes the fractional part function, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Period of the function f(x)=cos(cos pi x)+e^({4x}), where {.} denotes the fractional part of x, is

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

The domain of function f(x)=ln(ln((x)/({x}))) is (where f ) denotes the fractional part function

The domain of function f(x)=ln(ln((x)/({x}))) is (where f ) denotes the fractional part function

The domain of function f(x)=ln(ln((x)/({x}))) is (where { ) denotes the fractional part function)

Domain of the function f(x)=log_(e)cos^(-1){sqrt(x)}, where {.} represents fractional part function

Period of the function f(x) = cos(cospix) +e^({4x}) , where {.} denotes the fractional part of x, is

Solve {x+1}-x^(2)+2x>0( where {.} denotes fractional part function)

Range of the function f(x)=cot^(-1){-x}+sin^(-1){x}+cos^(-1){x} , where {*} denotes fractional part function

Range of the function f(x)=({x})/(1+{x}) is (where "{*}" denotes fractional part function)