Home
Class 12
MATHS
sin^(- 1)(x^2sqrt(1-x^2)+xsqrt(1-x^4)), ...

`sin^(- 1)(x^2sqrt(1-x^2)+xsqrt(1-x^4)),` write simplest from

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^-1[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]

sin^-1[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]

Given x^2=cos2theta Write tan^-1((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))) in simplest form.

Sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^(2))]=

Express "sin"^(-1)[(sqrt(1+x)+sqrt(1-x))/(2)],0ltxlt1 in the simplest form.

If y = sin^(-1) x^2 sqrt(1 - x^2) + xsqrt(1 - x^4) , show that (dy)/(dx) - (2x)/(sqrt(1 - x^4)) = 1/(sqrt(1 - x^2))

Write cot^(-1) (sqrt(1+x^(2))-x) in the simplest form.

(d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

Write tan^(-1)((x)/(sqrt(a^(2)-x^(2)))) in simplest form.

Write the following functions in the simplest from : sin^(-1)(x^(2)sqrt(1-x^(2))+xsqrt(1-x^(4)))