Home
Class 14
MATHS
t^(2)-4t+1=0" d "quad t^(3)+(1)/(t^(3))=...

t^(2)-4t+1=0" d "quad t^(3)+(1)/(t^(3))=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= (a) -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x=t^(2),quad y=t^(3), then (d^(2)y)/(dx^(2))=3/2(b)3/4t(c)3/2t(d)3t/2

Find (dy)/(dx) where x=cos^(-1)(8t^(4)-8t^(2)+1) and y=sin^(-1)(3t-4t^(3)),[0lt t lt(1)/(2)] .

Differentiate w.r.t. time. (i) y=t^(2) " " (ii) x=t^(3//2)" " (iii) y=(1)/(sqrt(t)) (iv) x=4t^(3) " " (v) y=2sqrt(t) " " (vi) y=2t^(2)+t-1 (vii) y=3sqrt(t)+(2)/(sqrt(t)) (viii) y=t^(3)sin t " " (ix) x=te^(t) (x) x= sqrt(t)(1-t)

If x=t^(2),y=t^(3), then (d^(2)y)/(dx^(2))=(a)(3)/(2)(b)(3)/((4t)) (c) (3)/(2(t)) (d) (3t)/(2)