Home
Class 12
MATHS
f(x)=sin^(2)x,0<=x<=pi...

f(x)=sin^(2)x,0<=x<=pi

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify Rolle's theorem for each of the following functions on indicated intervals; f(x)=sin^(2)x on 0<=x<=pi f(x)=sin x+cos x-1 on [0,(pi)/(2)]f(x)=sin x-sin2x on [0,pi]

Verify the truth of Rolle's theorem for the functions: f(x)=sin^(2)x " in " 0 le x le pi

Find the average values of this functions: (a) f(x) = sin^(2)x " over " [0, 2pi] (b) f(x) = (1)/(e^(x) + 1) over [0, 2]

For the function, f(x)=sin2x, 0ltxltpi . Find the point between 0 and pi that satisfies f'(x)=0 .

For the function, f(x)=sin2x, 0ltxltpi . Find the point of local maxima and local minima.

For the function, f(x)=sin2x, 0ltxltpi . Find the local maximum and local minimum value.

If f(x)=(sin(x^(2)))/(x),x!=0,f(x)=0,x=0 then at x=0,f(x) is

Find the points of local maxima or local minima,if any,using first derivative test,and local maximum or local minimum of f(x)=sin2x,0

Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of f(x)=sin2x , 0ltxltpi

Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of f(x)=sin2x ,\ 0ltxltpi