Home
Class 11
MATHS
Find the value of i^n+i^(n+1)+i^(n+2)+i^...

Find the value of `i^n+i^(n+1)+i^(n+2)+i^(n+3)` for all `n in Ndot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of : (1+i)^n, n inN

Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 for all n inN

Find the value of 2^n/((1+i)^(2n))+(1+i)^(2n)/(2^n)

If n in N, then find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3)

For any positive integer n, find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3)+i^(n+4)+i^(n+5)+i^(n+6)+i^(n+7) .

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

Evaluate (i^(4n+1) - i^(4n-1)) .

Show that (1-i)^(n)(1-(1)/(i))^(n)=2^(n) for all n in N