Home
Class 12
MATHS
A continuous function f:[1,6]->[0,oo) is...

A continuous function `f:[1,6]->[0,oo)` is such that `f prime(x)=2/(x+f(x)) and f(1)=0,` then the maximum value of f cannot exceed

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then f^-1(x) is

If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0 , then find the value of int_(0)^(a)(dx)/(1+f(x)) .

If a continuous function f on [0, a] satisfies f(x)f(a-x)=1, a >0, then find the value of int_0^a(dx)/(1+f(x))

If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0 , then find the value of int_(0)^(a)(dx)/(1+f(x)) .

If a continuous function f on [0, a] satisfies f(x)f(a-x)=1, a >0, then find the value of int_0^a(dx)/(1+f(x))

If a continuous function f on [0, a] satisfies f(x)f(a-x)=1, a >0, then find the value of int_0^a(dx)/(1+f(x))

If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0 , then find the value of int_(0)^(a)(dx)/(1+f(x)) .

The function f : [0,oo)to[0,oo) defined by f(x)=(2x)/(1+2x) is