Home
Class 12
MATHS
The minimum area of circle which touches...

The minimum area of circle which touches the parabolas `y=x^2+1` and `y^2=x-1` is `(9pi)/(16)s qdotu n i t` (b) `(9pi)/(32)s qdotu n i t` `(9pi)/8s qdotu n i t` (d) `(9pi)/4s qdotu n i t`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum area of circle which touches the parabolas y=x^2+1 and y=x^2-1 (i) ((9pi)/16) sq.unit (ii) ((9pi)/32) sq.unit (iii) ((9pi)/8) sq.unit (iv) ((9pi)/4) sq.unit

The area of the smaller region bounded by circle x^2+y^2=1 and |y|=x+1 (a) pi/2-1/2s qdotu n i t s (b) pi/2-1s qdotu n i t s (c) pi/2s qdotu n i t s (d) pi/2 +1s qdotu n i t s

The area of the smaller region bounded by circle x^2+y^2=1 and |y|=x+1 (a) pi/2-1/2s qdotu n i t s (b) pi/2-1s qdotu n i t s (c) pi/2s qdotu n i t s (d) pi/2 +1s qdotu n i t s

The area bounded by the curve y^2=8x\ a n d\ x^2=8y is (16)/3s qdotu n i t s b. 3/(16)s qdotu n i t s c. (14)/3s qdotu n i t s d. 3/(14)s qdotu n i t s

The area bounded by the curve y^2=8x\ a n d\ x^2=8y is (16)/3s qdotu n i t s b. 3/(16)s qdotu n i t s c. (14)/3s qdotu n i t s d. 3/(14)s qdotu n i t s

The area bounded by the curve a^2y=x^2(x+a) and the x-axis is (a^2)/3s qdotu n i t s (b) (a^2)/4s qdotu n i t s (3a^2)/4s qdotu n i t s (d) (a^2)/(12)s qdotu n i t s

The area bounded by the curve a^2y=x^2(x+a) and the x-axis is (a^2)/3s qdotu n i t s (b) (a^2)/4s qdotu n i t s (3a^2)/4s qdotu n i t s (d) (a^2)/(12)s qdotu n i t s

The area bounded by the curve a^2y=x^2(x+a) and the x-axis is (a^2)/3s qdotu n i t s (b) (a^2)/4s qdotu n i t s (3a^2)/4s qdotu n i t s (d) (a^2)/(12)s qdotu n i t s

The area of a circle whose radius is the diagonal of a square whose area is 4 sq. units is 16pi s qdotu n i t s (b) 4pi s qdotu n i t s (c) 6pi s qdotu n i t s (d) 8pi s qdotu n i t s

The area of the region containing the points (x , y) satisfying 4lt=x^2+y^2lt=2(|x|+|y|) is (a) 8s qdotu n i t s (b) 2s qdotu n i t s (c) 4pis qdotu n i t s (d) 2pis qdotu n i t s