Home
Class 7
MATHS
" If "a+b=6" and "a^(2)-b^(2)=24," then ...

" If "a+b=6" and "a^(2)-b^(2)=24," then "a-b^(n)=4

Promotional Banner

Similar Questions

Explore conceptually related problems

If a + b = 6 and a^(2) - b^(2) = 24 , then a - b = 4 .

If (a-b)^(2)+(a+b)^(2)=24 , then a^(2)+b^(2)=

If a^(4) + b^(4) = a^(2) b^(2) find a^(6) + b^(6)

Factorise : (a+ b) ^(2) - 5( a^(2) - b^(2) ) - 24 (a-b)^(2)

If a^4+b^4=a^2b^2 then a^6+b^6=

If A={1,3,5,B} and B={2,4}, then

If a a n d b are positive integers, a > b and (a+b)^2-(a-b)^2> 29 , then the smallest value of a is 3 (b) 4 (c) 6 (d) 7

If n(A) = 8 and n(A nn B) = 2 , then n((A nn B)' nn A) is equal to a)2 b)4 c)6 d)8