Home
Class 10
MATHS
" If "a cos theta-bsin theta=c," then pr...

" If "a cos theta-bsin theta=c," then prove that "a sin theta+b cos theta=+-sqrt(a^(2)+b^(2)-c^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If a cos theta - b sin theta =c , then prove that a sin theta + b cos theta = +- sqrt(a^(2) + b^(2) - c^(2))

If a cos theta-b sin theta=c; prove that a sin theta+b cos theta=+-sqrt(a^(2)+b^(2)-c^(2))

If a cos theta - b sin theta = c, prove that a sin theta + b cos theta = pm sqrt(a^(2) + b^(2) - c^(2)) .

If a cos theta-b sin theta=c, show that a sin theta+b cos theta=+-sqrt(a^(2)+b^(2)-c^(2))

If a cos theta+b sin theta = c then show that a sin theta- b cos theta= +- sqrt(a^2+b^2-c^2)

If a cos theta-b sin theta=c, show that a sin theta+b cos theta=+-sqrt(a^(2)+b^(2)+c^(2))

If acos theta -bsin theta =c, then show that asine theta + bcos =pm sqrt (a^(2)+b^(2)-c^(2))

If a sin theta+b cos theta=c then prove that a cos theta-b sin theta=sqrt(a^(2)+b^(2)-c^(2))

Ifa sin theta+b cos theta=C, then prove that a cos theta-b sin theta=sqrt(a^(2)+b^(2)-c^(2))

If a cos theta - b sin theta = c, show that a sin theta + b cos theta = pm sqrt(a^(2) + b^(2) - c^(2))