Home
Class 13
MATHS
" If "cos y=x cos(a+y)," with "cos a!=+-...

" If "cos y=x cos(a+y)," with "cos a!=+-1," prove that "(dy)/(dx)=(cos^(2)(a+y))/(sin a)

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos y=x cos(a+y), where cos a!=-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y= x cos (a+y) , with cos a ne pm 1 , prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a) .

If cos y= x cos (a+y) , with cos a ne pm 1 , prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a) .

If cos y= x cos (a+y) , with cos a ne pm 1 , prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a) .

If cos y= x cos (a + y) , with cos a ne +- 1 , prove that (dy)/(dx) = (cos^(2) (a + y))/(sin a)

If cos y = x cos (a + y) with cos a != +- 1 . Prove that (dy)/(dx)=cos^2(x+a)/sina

If cos quad yquad =quad xquad cosquad (a+y) with cos quad a!=+-1, prove that (dy)/(dx)=((cos^(2)(a+y))/(sin a))