Home
Class 12
MATHS
" The limit "L=lim(x rarr oo)Sigma(r=1)^...

" The limit "L=lim_(x rarr oo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2))" satisfies "

Promotional Banner

Similar Questions

Explore conceptually related problems

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies the relation

The limit L=lim_(nrarroo)Sigma_(r=4)^(n-4)(n)/(n^(2)+r^(2)) satisfies the relation

lim_(n rarr oo) n.sum_(r=0)^(n-1) 1/(n^(2)+r^(2)) =

lim_(n rarr oo)sum_(r=2n+1)^(3n)(n)/(r^(2)-n^(2)) is equal to