Home
Class 12
MATHS
Let M be the minimum value of f(theta)=(...

Let `M` be the minimum value of `f(theta)=(3cos^(2)theta+sin^(2)theta)(sec^(2)theta+3cos ec^(2)theta)` ,for permissible real values of `theta` and `P_(1),P_(2),...P_(n)(n>=1)` denotes the all real solutions of the equation `((x-1)(50-10x))/(x^(2)-5x)=x^(2)-8x+7` then `(sum_(i=1)^(n)P_(i))+M,` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

x=cos ec^(2)theta,y=sec^(2)theta,z=(1)/(1-sin^(2)theta cos^(2)theta) then xyz is equal to is equal to

If(cos theta+i sin theta)(cos2 theta+i sin2 theta).....(cos n theta+i sin n theta)=1 then the value of theta is:

(sin theta+sec theta)^(2)+(cos theta+cos ec theta)^(2)=(1+sec theta cos ec theta)^(2)

If P_(n)=cos^(n)theta+sin^(n)theta then 2P_(6)-3P_(4)+1=

The minimum value of 64sec theta+27cos ec theta in (0,pi/2) is P then root(3)(P) =

If -1

If theta =(pi)/(2 ^(n) +1), then cos theta cos 2 theta cos 2^(2) theta …cos 2 ^(n-1)theta is equal to