Home
Class 11
MATHS
If A={x in C : x^2=1}\ a n d\ B={x in ...

If `A={x in C : x^2=1}\ a n d\ B={x in C : x^4=1}` , then write `A-B\ a n d\ B-Adot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If quad {x in C:x^(2)=1} and B={x in C:x^(4)=1} ,then write A-B and B-A .

Let A={a , b , c , d},\ B={a , b , c}a n d\ C={b , d} . Find all sets X such that: XsubB\ a n d\ XsubCdot

If a^x=b ,\ b^y=c\ a n d\ c^z=a , prove that x y z=1

If the lines x+a y+a=0,\ b x+y+b=0\ a n d\ c x+c y+1=0 are concurrent, then write the value of 2a b c-a b-b c-c adot

If the lines x+a y+a=0,\ b x+y+b=0\ a n d\ c x+c y+1=0 are concurrent, then write the value of 2a b c-a b-b c-c adot

If a ,\ b ,\ c >0\ a n d\ x ,\ y ,\ z in R , then the determinant |\ \ (a^x+a^x)^2(a^x-a^(-x))^2 1(b^y+b^(-y))^2(b^y-b^(-y))^2 1(c^z+c^(-z))^2(c^z-c^(-z))^2 1| is equal to- a. a^x b^y c^x b. a^(-x)b^(-y)c^(-z)\ c. a^(2x)b^(2y)c^(2x) d. zero

Let f,\ g\ a n d\ h be real-valued functions defined on the interval [0,\ 1] by f(x)=e^x^2+e^-x^2,\ g(x)=x e^x^2+e^-x^2\ a n d\ h(x)=x^2e^x^2+e^-x^2 . If a , b ,\ a n d\ c denote respectively, the absolute maximum of f,\ g\ a n d\ h on [0,\ 1], then a=b\ a n d\ c!=b (b) a=c\ a n d\ a!=b a!=b\ a n d\ c!=b (d) a=b=c

In triangle A B C ,D is on A C such that A D=B C' and BD=D C ,/_D B C=2x ,a n d/_B A D=3x , all angles are in degrees, then find the value of xdot

In triangle A B C ,D is on A C such that A D=B C=D C ,/_D B C=2x ,a n d/_B A D=3x , all angles are in degrees, then find the value of xdot

In triangle A B C ,D is on A C such that A D=B C' and BD=D C ,/_D B C=2x ,a n d/_B A D=3x , all angles are in degrees, then find the value of x