Home
Class 12
MATHS
Let alpha,beta,gamma,delta are zeroes of...

Let `alpha,beta,gamma,delta` are zeroes of `P(x) = 5x^4 + px^3 + qx^2 + rx + s(p,q,r,s in R) and alpha,gamma,delta` are zeroes of `Q(x)= x^3-9x^2+ax-24(alpha < beta < gamma < delta).` If `alpha,gamma,delta` (takn in that order) are in arithmetic progression and `alpha,beta,gamma,delta` (taken in that order) are in harmonic progression, then fine the value of `|(P(1))/(Q(1))|.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma, delta are roots of x^(4) + px^(3) + qx^(2) + rx + s = 0 then sum alpha^(2) beta gamma =

If alpha, beta, gamma, delta are roots of x^(4) + px^(3) + qx^(2) + rx + s = 0 then sum alpha^(2) beta gamma =

If alpha, beta, gamma, delta are roots of x^(4) + px^(3) + qx^(2) + rx + s = 0 then sum alpha^(2) beta =

If alpha, beta and gamma are the zeros of x^3 + px^2 + qx + r , then Sigma(1)/(alpha) is

If alpha, beta, gamma are roots of the equation x^(3) - px^(2) + qx - r = 0 , then sum alpha^(2) beta =

If alpha, beta,gamma are roots of x^(3) - px^(2) + qx - r = 0 then sum alpha (beta + gamma) =

If alpha, beta, gamma are the roots of x^(3) - px^(2) + qx - r = 0 then alpha^(4) + beta^(4) + gamma^(4) =

If alpha, beta , gamma are zeroes of x^(3) + 3x^(2) - x +2 the alpha beta gamma = …………….