Home
Class 11
MATHS
Show that the minimum value of (x+a)(x+b...

Show that the minimum value of `(x+a)(x+b)//(x+c)dotw h e r ea > c ,b > c ,` is `(sqrt(a-c)+sqrt(b-c))^2` for real values of `x >-cdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the minimum value of ((a+x)(b+x))/((c+x))a,b>c,x>-c is (sqrt(a-c)+sqrt(b-c))^(2)

If a+b+c=0 , then find the value of sqrt(x^a.x^b.x^c) .

Evaluate: int(a x^2+b x+c)/((x-a)(x-b)(x-c))\ dx ,\ \ w h e r e\ a ,\ b ,\ c are distinct.

In /_\ABC ,the minimum value of Sigma((sqrt(a))/(sqrt(b)+sqrt(c)-sqrt(a))) is

The minimum value of [x_(1)-x_(2))^(2)+(12-sqrt(1-(x_(1))^(2))-sqrt(4x_(2))]^((1)/(2)) for all permissible values of x_(1) and x_(2) is equal to a sqrt(b)-c where a,b,c in N, the find the value of a +b-c

The value of (a-c)/((a-b)(x-a)) + (b-c)/((b-a)(x-b)) is:

The value of (x^(a-b))^(c ) xx (x^(b-c))^(a) xx (x^(c-a))^(b) is