Home
Class 12
MATHS
Prove by mathematical induction that sum...

Prove by mathematical induction that `sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1), forall n in N`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(n) 3^( r" "n)C_(r ) =4^(n) .

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that sum_(r=0)^(2n)r(.^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that: sum_(r=0)^(n) 3^( r) ""^(n)C_(r) = 4^(n) .

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Prove that sum_(r=0)^(2n)(.^(2n)C_(r))^(2)=n^(4n)C_(2n)

Prove that sum_(r=0)^(n)r(n-r)C_(r)^(2)=n^(2)(^(2n-2)C_(n))

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2n.""^(4n-1)C_(2n-1) .