Home
Class 11
MATHS
If roots of a x^2+b x+c=0 are alphaa n ...

If roots of `a x^2+b x+c=0` are `alphaa n dbetaa n d4a+2b+c >0,4a ,-2b+c >0,a n dc<0,` then possible values /values of `[alpha]+[beta]` is/are (where [.] represents greatest integer function) a.`-2` b.` -1 `c. `0 `d. `1`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2)[x+[x+[x]]]dx is (wherel.] represent greatest integer function.3 (b) 2 (c) 0( d) 1

If alpha and beta are roots of the quadratic equation ax^(2)+bx+c=0 and a+b+c>0,a-b+c>0&c<0, then [alpha]+[beta] is equal to (where [.] denotes the greatest integer function) 10 b.-3 c.-1 d.0

The number of roots of x^(2)-2=[sin x], where [.] stands for the greatest integer function is 0(b)1(c)2(d)3 .

If A , B , C are three real numbers and p=[A+b+C] and q=[A]+[B]+[C]dot (where [.] represents greatest integer function). Then maximum value of p-q is: 1 (b) 0 (c) 2 (d) 3

If a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greratest value of a^(2)b^(2)c^(2) is

Consider a quadratic equation ax^(2)+bx+c=0 having roots alpha,beta. If 4a+2b+c>0,a-b+c then [[alpha]+[beta]| can be { where [] is greatest integer }

If 2a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greatest value of a^(4)b^(2)c^(2)"_____" .

If a gt 0 and b^(2) - 4 ac = 0 then solve ax^(3) + (a + b) x^(2) + (b + c) x + c gt 0 .