Home
Class 12
MATHS
lim(x rarr-2)(log(x+3))/(n+2)=1...

lim_(x rarr-2)(log(x+3))/(n+2)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: lim_(x rarr -2) log(x+3)/(x+2)=1

lim_(x rarr0)(log(1+x))/(x)=1

Prove that lim_(x rarr 2) log(2x-3)/(2(x-2))=1

Prove that lim_(x rarr 0) (log(1+x^3))/(sin^3 x)=1 .

lim_(x rarr0)(log(1-(x)/(2)))/(x)

STATEMENT-1: lim_(x rarr oo)(log[x])/(sqrt(([x])/(sec^(2)-1)))=0 STATEMENT-2: lim_(x rarr0)(sqrt(sec^(2)-1))/(x) does not exist.STATEMENT-3: lim_(x rarr2)(x-1)^((1)/(x-2))=1

lim_(x rarr 0) (log(1+x))/(3^x-1)=1/(log_(e)(3))

lim_(x rarr0)(log(1+x^(2)))/(sin^(2)x) =

lim_(x rarr0)(x log(1+2x))/(x tan x)

Lim_(x rarr0)(log(1+x)-x)/(x^(2))