Home
Class 12
MATHS
|I[y=(tan^(-1)x)^(2)," prove that "(x^(2...

|I[y=(tan^(-1)x)^(2)," prove that "(x^(2)+1)^(2)*(d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)=2

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(tan^(-1)x^(2)), show that (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)=2

IF y= ( tan ^(-1) x)^(2) " then " (x^(2) +1)^(2) (d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)=

If y=(tan^(-1)x)^(2), then (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)=

If y= (sec^(-1)x)^(2) , prove that x^(2)(x^(2)-1) (d^(2)y)/(dx^(2)) +x(2x^(2)-1) (dy)/(dx) -2=0 .

If y = (tan^(-1)x)^(2) then show that (x^(2) + 1)^(2) (d^2 y)/(dx^2) + 2x(x^2 + 1)(dy)/(dx) = 2

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))(2x)(dy)/(dx)=0

If y=(cos^(-1)x)^(2) prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-2=0

If y=e^(2tan^(-1)x) , the show that : (1+x^(2))^(2)(d^(2)y)/(dx^(2))+2x(1+x^(2))dy/dx=4y .

If y=((1+x)/(1-x))^(n) , prove that (1-x^(2))(d^(2)y)/(dx^(2))=2(n+x)(dy)/(dx).