Home
Class 11
MATHS
If a+i b=(c+i)/(c-i) , where c is real, ...

If `a+i b=(c+i)/(c-i)` , where `c` is real, prove that:`a^2+b^2=1a n d b/a=(2c)/(c^2-1)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a+i b=(c+i)/(c-i) , where c is real, prove that: a^2+b^2=1 and b/a=(2c)/(c^2-1)dot

If a+ib= (c+i)/(c-i) , where c is real, prove that a^2+b^2=1 and b/a= (2c)/(c^2-1) .

If a+ib=(c+i)/(c-i), where c is real,prove that: a^(2)+b^(2)=1 and (b)/(a)=(2c)/(c^(2)-1)

If a+ bi = (c + i)/(c-i), a, b , c in R , show that a^(2) + b^(2)=1 and (b)/(a)= (2c)/(c^(2)-1)

If (c+i)/(c-i)= a+ ib , where a, b, c are real, then a^2+ b^2 equals :

If a, b, c, d are in GP, then prove that 1/((a^(2)+b^(2))), 1/((b^(2)+c^(2))), 1/((c^(2)+d^(2))) are in GP.

If A=[(a,b),(c,d)] , where a, b, c and d are real numbers, then prove that A^(2)-(a+d)A+(ad-bc) I=O . Hence or therwise, prove that if A^(3)=O then A^(2)=O

If A=[(a,b),(c,d)] , where a, b, c and d are real numbers, then prove that A^(2)-(a+d)A+(ad-bc) I=O . Hence or therwise, prove that if A^(3)=O then A^(2)=O

If A=[(a,b),(c,d)] , where a, b, c and d are real numbers, then prove that A^(2)-(a+d)A+(ad-bc) I=O . Hence or therwise, prove that if A^(3)=O then A^(2)=O

If A=[(a,b),(c,d)] , where a, b, c and d are real numbers, then prove that A^(2)-(a+d)A+(ad-bc) I=O . Hence or therwise, prove that if A^(3)=O then A^(2)=O