Home
Class 12
MATHS
If vec a , vec ba n d vec c are unit co...

If ` vec a , vec ba n d vec c` are unit coplanar vectors, then the scalar triple product `[2 vec a- vec b2 vec b- vec c2 vec c- vec a]` is `0` b. `1` c. `-sqrt(3)` d. `sqrt(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a, vec b and vec c are unit coplanar vectors then the scalar triple product [2 vec a - vec b 2 vec b - vec c 2 vec c - vec a]

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is a. 0 b. 1 c. -sqrt(3) d. sqrt(3)

If vec a,vec b and vec c are unit coplanar vectors, then the scalar triple product [2vec a-vec b2vec b-vec c2vec c-vec a] is 0 b.1 c.-sqrt(3)d.sqrt(3)

Let vec a, vec b and vec c be three vectors. Then scalar triple product [vec a, vec b, vec c]=

If vec a, vec b and vec c are non coplanar unit vectors such that vec a xx (vec b xx vec c) = (vec b + vec c)/sqrt2 , then

If vec a , vec b , and vec c are three mutually orthogonal unit vectors, then the triple product [ vec a+ vec b+ vec c vec a+ vec b vec b+ vec c] equals: (a.) 0 (b.) 1 or -1 (c.) 1 (d.) 3

If vec a , vec b , and vec c are three mutually orthogonal unit vectors, then the triple product [ vec a+ vec b+ vec c vec a+ vec b vec b+ vec c] equals: (a.) 0 (b.) 1 or -1 (c.) 1 (d.) 3

If vec a , vec b , and vec c are three mutually orthogonal unit vectors, then the triple product [ vec a+ vec b+ vec c vec a+ vec b vec b+ vec c] equals: (a.) 0 (b.) 1 or -1 (c.) 6 (d.) 3

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.