Home
Class 12
MATHS
If y={x+sqrt(x^2+1)}^m , show that (x^2+...

If `y={x+sqrt(x^2+1)}^m` , show that `(x^2+1)y_2+x y_1-m^2\ y=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y={x+sqrt(x^(2)+1)}^(m), show that (x^(2)+1)y_(2)+xy_(1)-m^(2)y=0

If y=log(x+sqrt(x^2+a^2)) , show that (a^2+x^2)y_2+xy_1=0

If x=sin(1/alogy) , show that (1-x^2)y_2-x\ y_1-a^2\ y=0 .

If y= [Log(x+sqrt(x^2+1))]^2 then show that (x^2+1)y_2+xy_1=0

If y={x +sqrt(x^(2)+1)}^(m) , then show that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)-m^(2)y=0.

If 2y= sqrt (x+1) + sqrt (x-1) , show that 4( x^2 -1) y2 + 4xy1 - y = 0

Let y=(x+sqrt(1+x^2))^m Show that (1+x^2)(d^2y)/dx^2+xdy/dx-m^2y=0 .

If y = (sin^(-1) x)/(sqrt(1-x^2)) show that (1-x^2) y_2 - 3xy_1 - y =0

If y=sin^(-1)x/sqrt(1-x^(2)) show that (1-x^(2))y_(2)-3xy_(1)-y=0 .