Home
Class 12
MATHS
Let bara=alpha1bari+alpha2barj+alpha3bar...

Let `bara=alpha_1bari+alpha_2barj+alpha_3bark,barb=beta_1bari+beta_2barj+beta_3bark and barc=gamma_1bari+gamma_2barj+gamma_3bark,|bara|=2sqrt2,bara` makes an angle `pi/3` with the plane of `barb,barc` and the angle between `barb,barc is pi/6,` then `|(alpha_1,alpha_2,alpha_3),(beta_1,beta_2,beta_3),(gamma_1,gamma_2,gamma_3)|` is equal to (n is even natural number )

Promotional Banner

Similar Questions

Explore conceptually related problems

If bara= bari-2barj-3bark, barb= 2bari+barj-bark, barc= bari+3barj-2bark , find bara xx (barb xx barc) .

If bara=bari+barj+bark,bara.barb=1,baraxxbarb=2bari+barj-3bark then 3barb=

|{:(1,alpha,alpha^2),(1,beta,beta^2),(1,gamma,gamma^2):}|=(alpha-beta)(beta-gamma)(gamma-alpha)

If the vectors bara =bari - barj + 2bark, barb =2bari+4barj+bark and barc = gammabari - barj +mubark are mutually orthogonal, then (gamma,mu)=

If bara = 6bari+2barj+3bark and barb = 2bari - 9barj+6bark , " then find " bara.barb " and the angle between " bara and barb .

If bara = bari - 2barj - 3bark , barb= 2bari + barj - bark , barc = bari + 3barj - 2bark find bara xx (barb xx barc) .

Prove that the vectors bara= 2bari - barj + bark, barb = bari -3barj -5bark and barc=3bari -4barj -4bark are coplanar.

Show that |(1,alpha,alpha^3),(1,beta,beta^3),(1,gamma,gamma^3)|=(alpha-beta)(beta-gamma)(gamma-alpha)( alpha+beta+gamma)

Let bara=bari-2barj+3bark,barb=2bari+3barj-bark,barc=lamdabari+barj+(2lamda-1)bark . If barc is parallel to the plane of bara,barb then lamda =