Home
Class 12
MATHS
" If "y=(sin^(-1)x)^(2)," then "(1-x^(2)...

" If "y=(sin^(-1)x)^(2)," then "(1-x^(2))(d^(2)y)/(dx^(2))" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function y= sin^(-1)x, "then" (1-x^(2))(d^(2)y)/(dx^(2)) is equal to

If y=(sin^(-1)x)^(2),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=2

If y=(sin^(-1)x)^(2)+(cos^(-1)x)^(2), then (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx) is equal to 4(b)3(c)1(d)0

If y=(sin^(-1)x)/(sqrt(1-x^(2))), then ((1-x^(2))dy)/(dx) is equal to x+y (b) 1+xy1-xy(d)xy-2

If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

If y=sin^(-1)x , show that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/dx=0 .

If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/(dx)=- ky, where k =

If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/(dx)=- ky, where k =