Home
Class 11
MATHS
" ii) "2|z-2|=|z-1|...

" ii) "2|z-2|=|z-1|

Promotional Banner

Similar Questions

Explore conceptually related problems

Write any two complex numbers,then show that |z1+z2|^2+|z1-z2|^2=2(|z1|^2+|z2|^2)

If z_1 , and z_2 be two complex numbers prove that |z_1+z_2|^2+|z_1-z_2|^2=2[|z_1|^2+|z_2|^2]

If z_1, z_2 in C , then say which are true and false - . |z_1+z_2|^2=|z_1""|^2+|z_2|^2-2R e(z_1 z_2) |z_1-z_2|^2=|z_1""|^2-|z_2|^2-2R e(z_1 z_2) |z_1+z_2|^2+|z_1-z_2|^2=2(|z_1|^2+|z_2|^2) |a z_1-b z_2|^2+|b z_1+a z_2|^2=(a^2+b^2)(|z_1|^2+|z_2|^2) , where a ,b in Rdot

Prove that |z_1+z_2|^2+|z_1-z_2|^2 =2|z_1|^2+2|z_2|^2 .

Let z_1=r_1(costheta_1+isintheta_1)a n dz_2=r_2(costheta_2+isintheta_2) be two complex numbers. Then prove that |z_1+z_2|^2=r1 2+r2 2+2r_1r_2cos(theta_1-theta_2) or |z_1+z_2|^2=|z_1|^2+|z_2|^2+2|z_1||z_2|^()_cos(theta_1-theta_2) |z_1-z_2|^2=r1 2+r2 2-2r_1r_2cos(theta_1-theta_2) or |z_1-z_2|^2=|z_1|^2+|z_2|^2-2|z_1||z_2|^()_cos(theta_1-theta_2)

If z_(1) and z_(2) are two complex numbers,then (A) 2(|z|^(2)+|z_(2)|^(2)) = |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2) (B) |z_(1)+sqrt(z_(1)^(2)-z_(2)^(2))|+|z_(1)-sqrt(z_(1)^(2)-z_(2)^(2))| = |z_(1)+z_(2)|+|z_(1)-z_(2)| (C) |(z_(1)+z_(2))/(2)+sqrt(z_(1)z_(2))|+|(z_(1)+z_(2))/(2)-sqrt(z_(1)z_(2))|=|z_(1)|+|z_(2)| (D) |z_(1)+z_(2)|^(2)-|z_(1)-z_(2)|^(2) = 2(z_(1)bar(z)_(2)+bar(z)_(1)z_(2))

Prove that |z_1+z_2|^2 = |z_1|^2 + |z_2|^2 if z_1/z_2 is purely imaginary.

Prove that |1-barz_1z_2|^2-|z_1-z_2|^2=(1-|z_1|^2)(1-|z_2|^2) .

For any two complex numbers z_1 and z_2 prove that: |\z_1+z_2|^2 +|\z_1-z_2|^2=2[|\z_1|^2+|\z_2|^2]

Given that |z_1+z_2|^2=|z_1|^2+|z_2|^2 , prove that z_1/z_2 is purely imaginary.