Home
Class 12
MATHS
y(1)^(2)((1)/(x)-(1)/(2x^(2)))e^(2x)dx...

y_(1)^(2)((1)/(x)-(1)/(2x^(2)))e^(2x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(2)((1)/(x)-(1)/(x^(2)))e^(x)dx=e((e)/(2)-1)

int_(1)^(2)((1)/(x)-(1)/(x^(2)))e^(x)dx=e((e)/(2)-1)

int(e^(x))/(x^(4))dx=-(e^(x))/(3)[(1)/(x^(3))+(1)/(2x^(2))+(1)/(2x)]+(1)/(6)int(e^(x))/(x)dx

Prove that, int (e^(x))/(x^(4))dx=-(e^(x))/(3)[(1)/(x^(3))+(1)/(2x^(2))+(1)/(2x)]+(1)/(6)int (e^(x))/(x)dx .

int_(-1)^(1)(e^(x)+e^(-x))/(2(1+e^(2x)))dx is equal to

If y=e^(mtan^(-1)x) , prove that : (1+x^(2))(d^(2)y)/(dx^(2))+(2x-m)dy/dx=0 .

If y=e^(2tan^(-1)x) , the show that : (1+x^(2))^(2)(d^(2)y)/(dx^(2))+2x(1+x^(2))dy/dx=4y .

If y=x^(2)e^(x),"show that "(d^(2)y)/(dx^(2))-(dy)/(dx)-2(x+1)e^(x)=0

int(e^(2x)+1)/(e^(2x)-1)dx=

int(e^(2x)-1)/(e^(2x)+1)dx=...