Home
Class 11
MATHS
Suppose A, B, C are defined as A=a^2b+a ...

Suppose A, B, C are defined as `A=a^2b+a b^2-a^2c-a c^2, B=b^2c+b c^2-a^2b-a b^2, a n dC=a^2c+a c^2-b^2c-b c^2, w h e r ea > b > c >0` and the equation `A x^2+B x+C=0` has equal roots, then `a ,b ,c` are in `AdotPdot` b. `GdotPdot` c. `HdotPdot` d. `AdotGdotPdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose A, B, C are defined as A = a^(2)b + ab^(2) - a^(2)c - ac^(2), B = b^(2)c + bc^(2) - a^(2)b - ab^(2) , and C = a^(2)c + ac^(2) - b^(2)c - bc^(2) , where a gt b gt c gt 0 and the equation Ax^(2) + Bx + C = 0 has equal roots, then a, b, c are in

If a(b-c)x^(2)+b(c-a)x+c(a-b)=0 has equal root,then a,b,c are in

If the roots of equation a(b-c)x^2+b(c-a)x+c(a-b)=0 be equal prove that a,b,c are in H.P.

If the roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0 are equal,then prove that 2b=a+c

Prove: |(a^2,b c, a c+c^2),(a^2+a b,b^2,a c ),(a b,b^2+b c,c^2)|=4a^2b^2c^2

If a , b , c are positive numbers such that a gt b gt c and the equation (a+b-2c)x^(2)+(b+c-2a)x+(c+a-2b)=0 has a root in the interval (-1,0) , then

The value of c for which the equation a x^2+2b x+c=0 has equal roots is (b^2)/a (b) (b^2)/(4a) (c) (a^2)/b (d) (a^2)/(4b)

If A,B,C, are the angles of a triangle such that cot(A/2)=3tan(C/2), then sinA ,sinB ,sinC are in (a)AdotPdot (b) GdotPdot (c) HdotPdot (d) none of these