Home
Class 10
MATHS
" 6."(tan^(-1)x)^(4)...

" 6."(tan^(-1)x)^(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve tan^(-1)x -"tan"^(-1)(1)/(4)=(pi)/(4) .

If tan^(-1)x=(pi)/(4)-tan^(-1)((1)/(3)) , then x is

If tan^(-1)x=(pi)/(4)-tan^(-1)((1)/(3))then x is

If tan^(-1)(x+(3)/(x))-tan^(-1)(x-(3)/(x))=tan^(-1)(6)/(x) then the value of x^(4) is

If y = tan^(-1)((3x-x^(3))/(1-3x^(2))) + tan^(-1) ((4x-4x^(3))/(1-6x^(2) + 4x^(4))) then (dy)/(dx) =

If int (x^(4) + 1)/(x^(6) + 1) dx = A tan^(-1) x + B tan^(-1) x^(3) + c , then (A,B) =

int(x^(4)+1)/(x^(6)+1)dx(1)tan^(-1)x-tan^(-1)x^(3)+c(2)tan^(-1)x-(1)/(3)tan^(-1)x^(3)+c(3)tan^(-1)x+tan^(-1)x^(3)+c(4)tan^(-1)x+(1)/(3)tan^(-1)x^(3)+c

int(x+x^(2/3)+x^(1/6))/(x(1+x^(1/3)))dx equals a) (3x^(2/3))/(4)+6tan^(-1)(x^(1/6))+C b) (3x^(2/3))/(2)+6tan^(-1)(x^(1/6))+C c) (3x^(2/3))/(10)+6tan^(-1)(x^(1/6))+C d) (3x^(2/3))/(5)+6tan^(-1)(x^(1/6))+C