Home
Class 12
MATHS
Locus of centroid of the triangle whose ...

Locus of centroid of the triangle whose vertices are `(acost, asint), (bsint,-bcost)` and `(1,0)` where t is a parameter is : (A) `(3x+1)^2 + (3y)^2 = a^2 - b^2` (B) `(3x-1)^2 + (3y)^2 = a^2 - b^2` (C) `(3x-1)^2 + (3y)^2 = a^2 + b^2` (D) `(3x+1)^2 + (3y)^2 = a^2 + b^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Locus of centroid of the triangle whose vertices are (acost ,asint),(bsint,-bcost)a n d(1,0), where t is a parameter is: (3x-1)^2+(3y)^2=a^2-b^2 (3x-1)^2+(3y)^2=a^2+b^2 (3x+1)^2+(3y)^2=a^2+b^2 (3x+1)^2+(3y)^2=a^2-b^2

Locus of centroid of the triangle whose vertices are (a cos t ,a s in t ), (b s in t ,-b cos t ) and (1, 0), where t is a parameter, is (3x-1)^2+(3y)^2=a^2-b^2 (3x-1)^2+(3y)^2=a^2+b^2 (3x+1)^2+(3y)^2=a^2+b^2 (3x+1)^2+(3y)^2=a^2-b^2

Locus of centroid of the triangle whose vertices are (a cos t,a sin t),(b sin t-b cos t)and(1,0) where t is a parameter is: (3x-1)^(2)+(3y)^(2)=a^(2)-b^(2)(3x-1)^(2)+(3y)^(2)=a^(2)+b^(2)(3x+1)^(2)+(3y)^(2)=a^(2)+b^(2)(3x+1)^(2)+(3y)^(2)=a^(2)-b^(2)

The centroid of the triangle with vertices at A(x_(1),y_(1)),B(x_(2),y_(2)),c(x_(3),y_(3)) is

The solution of 2 (y + 3) - x y(dy)/(dx) = 0 with y =-2, when x =1 is :a) (y + 3) = x ^(2) b) x ^(2) (y + 3) = 1 c) x ^(4) (y + 3) = 1 d) x ^(2) ( y +3) ^(2) = e ^(y +2)

2x + 3y = 7 , (a+b + 1 )x + (a + 2b + 2) y = 4 (a + b ) + 1

If a, b are noncollinear vectors and A = (x + 4y) a + (2x + y + 1)b, B = (y - 2x +2) a + (2x - 3y - 1) b and 3A = 2B, then (x, y) =

Factorize: 1) x^3-2x^2y+3x y^2-6y^3 2) 6a b-b^2+12 a c-2b c

Factorize : (1) (x+y)(2x+3y)-(x+y)(x+1) (2) (x+y)(2a+b)-(3x-2y)(2a+b)

. If 2x^(2)-5xy+2y^(2)=0 represents two sides of triangle whose centroid is (1,1) then the equation of the third side is (A)x+y-3=0 (B) x-y-3=0 (C) x+y+3=0 (D) x-y+3=0