Home
Class 11
MATHS
y=tan^(-1)((x)/(1+sqrt(1-x^(2))))...

y=tan^(-1)((x)/(1+sqrt(1-x^(2))))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((x)/(sqrt(1+x^(2))-1)), then (dy)/(dx)=

Differentiate w.r.t x , y = tan^(-1) (x /(sqrt(1+x^(2))-1))

Differentaite w.r.t x , y = tan^(-1) (x /(sqrt(1+x^(2))-1))

Solve y=tan^(-1)((sqrt(1+x^(2))-1)/(x))

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and z=tan^(-1)((2x)/(1-x^(2))) , then (dy)/(dz) is equal to -

Solve y=tan^(-1)((sqrt(1+x^2)-1)/x)

If y=tan^(-1)(((sqrt(1+x^(2))-sqrt(1-x^(2)))/((sqrt(1+x^(2))+sqrt(1-x^(2)))) find (dy)/(dx)

Prove that tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt(1+x^(2))*sqrt(1+y^(2))))