Home
Class 11
MATHS
Prove that graphs y=2x-3a n dy=x^2-x nev...

Prove that graphs `y=2x-3a n dy=x^2-x` never interest.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that graphs of y=x^(2)+2 and y=3x-4 never intersect.

In how many points graph of y=x^(3)-3x^(2)+5x-3 interest the x -axis?

If y=x^2+2x-3 , y-x graph is

Draw the graph of y=||x|^(2)-2|x|-3|, if the graph for y=x^(2)-2x-3 is given.

Find the angle of intersection of the following curves : y^2=xa n dx^2=y y=x^2a n dx^2+y^2=20 2y^2=x^3a n dy^2=32 x x^2+y^2-4x-1=0a n dx^2+y^2-2y-9=0 (x^2)/(a^2)+(y^2)/(b^2)=1a n dx^2+y^2=a b x^2+4y^2=8a n dx^2-2y^2=2 x^2=27ya n dy^2=8x x^2+y^2=2xa n dy^2=x y=4-x^2a n dy=x^2

If y=e^(3 log x+2x)," Prove that "(dy)/(dx)=x^(2) (2x+3) e^(2x) .

If y = x^(x ^(x^(x ^(x.... oo) then prove that x dy/dx = y^2/(1- y logx )

If sqrt(1-x^(2n))+sqrt(1-y^(2n))=a^(n)(x^(n)-y^(n)) prove that y^(n-1)*sqrt(1-x^(2n))dy=x^(n-1)sqrt(1-y^(2n))dx

If y=x^(n-1) log x , prove that (x^2y_2)+(3-2n)xy_1+(n-1)^2 .y=0 where y_1=dy/dx and y_2=(d^2)/(dx^2) .