Home
Class 10
MATHS
(sin A+cos A)/(sin A-cos theta)+(sin A-c...

(sin A+cos A)/(sin A-cos theta)+(sin A-cos A)/(sin A+cos A)=(2)/(sin A-C_(W)^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (sin A+cos A)/(sin A-cos A)+(sin A-cos A)/(sin A+cos A)=(2)/(sin^(2)-cos^(2)A)

(sin A+cos A)/(sin A-cos A)+(sin A-cos A)/(sin A+cos A)=(2)/(sin^(2)A-cos^(2)A) {Prove It}

Prove the following identities : (sin A + cos A)/ (sin A - cos A) + (sin A - cos A)/ (sin A + cos A) = (2)/ (2 sin^(2) A - 1)

(cos A)/(sin B sin C)+(cos B)/(sin C sin A)+(cos C)/(sin A sin B)=2

(sin theta-cos theta)/(sin theta+cos theta)+(sin theta+cos theta)/(sin theta-cos theta)=(2)/((2sin^(2)theta-1))

Prove each of the following identities : (sin theta + cos theta)/(sin theta - cos theta) + (sin theta - cos theta)/(sin theta + cos theta) = (2) /((sin^(2) theta - cos^(2) theta)) = (2) /((2sin^(2) theta -1))

(cos3A-cos A)/(sin3A-sin A)+(cos2A-cos4A)/(sin4A-sin2A)=(sin A)/(cos2A cos3A)

prove that , |{:(sin A ,cos A,sin (A+theta)),(sin B ,cos B,sin (B+theta)),(sin C ,cos C ,sin (C+theta)):}|=0

Prove each of the following identities : (i) (sin theta - cos theta)/(sin theta + cos theta) + ( sin theta+ cos theta)/(sin theta - cos theta) = (2)/((2 sin^(2) theta -1)) (ii) (sin theta + cos theta ) /(sin theta - cos theta) + ( sin theta - cos theta) /(sin theta + cos theta) = (2) /((1- 2 cos^(2) theta))

det [[sin A, cos A, sin (A + theta) sin B, cos B, sin (B + theta) sin C, cos C, sin (C + theta)]] = =