Home
Class 11
MATHS
If roots of an equation x^n-1=0a r e1,a1...

If roots of an equation `x^n-1=0a r e1,a_1,a_2,..... a_(n-1),` then the value of `(1-a_1)(1-a_2)(1-a_3)(1-a_(n-1))` will be `n` b. `n^2` c. `n^n` d. 0

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : (1-a_1)(1-a_2)(1-a_3)...(1-a_(n-1)) =n.

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

"If "a_1,a_2,a_3,.....,a_n" are in AP, prove that "a_(1)+a_(n)=a_(r)+a_(n-r+1)""

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : 1+a_1+a_2+…+a_(n-1) =0.

If a_(n) = n(n!) , then what is a_1 +a_2 +a_3 +......+ a_(10) equal to ?

If (1+x-x^2)^n/(1+x^2)=a_0+a_1x+a_2x^2+...+a_(2n)x^(2n) then find a_1+a_3+a_5+...+a_(2n-1)

If a_1,a_2,a_3,.....,a_n are in AP, prove that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n) .