Home
Class 11
MATHS
" If "a,vec b" and "vec c" are unit vect...

" If "a,vec b" and "vec c" are unit vectors satisfying "|vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)=9" then "|2vec a+5vec b+5vec c|" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b and vec c are unit vectors satisfying |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)=9 then |2vec a+5vec b+5vec c| is.

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

If vec a, vec b and vec c are unit vectors satisfying | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) = 9 then | 2vec a + 7vec b + 7vec c | =

If vec a,vec b,vec c are unit vector,prove that |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)<=9

If vec a, vec b and vec c are unit vectors then | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) is equal to

If vec a, vec b, vec c are unit vectors then |vec a - vec b|^(2) + |vec b - vec c|^(2) + |vec c - vec a|^(2) does not exceed.

If vec a , vec b , vec c are unit vector, prove that | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2lt=9.