Home
Class 12
MATHS
Let f(x) =int-1^x e^(t^2) dt and h(x)=f(...

Let `f(x) =int_-1^x e^(t^2) dt and h(x)=f(1+g(x)),` where `g (x)` is defined for all `x, g'(x)` exists for all `x, and g(x) < 0 for x > 0.` If `h'(1)=e and g'(1)= 1,` then the possible values which `g(1)` can take

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) =int_(-2)^xe^((1+t)^2)dt and g(x) = f(h(x)) ,where h(x) is defined for all x in R . If g'(2) = e^4 and h'(2)=1 then absolute value of sum of all possible values of h(2) is ___

Let f(x) =int_(-2)^xe^((1+t)^2)dt and g(x) = f(h(x)) ,where h(x) is defined for all x in R . If g'(2) = e^4 and h' (2)=1 then absolute value of sum of all possible values of h(2), is

Let f(x) =int_(-2)^xe^((1+t)^2)dt and g(x) = f(h(x)) ,where h(x) is defined for all x in R . If g'(2) = e^4 and h'(2)=1 then absolute value of sum of all possible values of h(2) is ___

Let f(x) =int_(-2)^xe^((1+t)^2)dt and g(x) = f(h(x)),where h(x) is defined for all x in R. If g'(2) = e^4 and h' (2)=1 then absolute value of sum of all possible values of h(2), is

Let f(x)=x, g(x)=1//x and h(x)=f(x) g(x). Then, h(x)=1, if

If the function f(x) = x^3 + e^(x/2) and g(x) =f^-1(x) , then the value of g'(1) is

Let f(x) = e^(x)g(x) , g(0)=2 and g (0)=1 , then find f'(0) .