Home
Class 12
MATHS
The value of ^(2n+1)C0^2+^(2n+1)C1^2+^(2...

The value of `^(2n+1)C_0^2+^(2n+1)C_1^2+^(2n+1)C_2^2+....+^(2n+1)C_n^2` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

""^(2n +1)C_0^2 -""^(2n+1)C_1^2 + ""^(2n+1)C_2^2 -…….- ""^(2n+1)C_(2n+1)^2 =

Find the sum : ""^(2n+1)C_0+""^(2n+1)C_1+""^(2n+1)C_2+...+""^(2n+1)C_n .

If n=5 ,then ("^n C_0)^(2) + ("^n C_1)^(2) + ("^n C_2)^(2) +......+ ("^n C_5)^(2) is equal to

If n in N then ^(n)C_0+^(n+1)C_1+^(n+2)C_2+....+^(n+r)C_r is equal to

(n+2)C_0(2^(n+1))-(n+1)C_1(2^(n))+(n)C_2(2^(n-1))-.... is equal to

(n+2)C_0(2^(n+1))-(n+1)C_1(2^(n))+(n)C_2(2^(n-1))-.... is equal to

The value of |1 1 1^n C_1^(n+2)C_1^(n+4)C_1^n C_2^(n+2)C_2^(n+4)C_2| is

The value of ,^nC_0 + ^(n+1)C_1 +^(n+2)C_2+……+^(n+k)C_k is equal to